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Abstract

The field of digital libraries (DLs) coalesced in 1994: the first digital library conferences were held that year, aware-

ness of the World Wide Web was accelerating, and the National Science Foundation awarded $24 Million (US) for the

Digital Library Initiative (DLI). In this paper we examine the state of the DL domain after a decade of activity by

applying social network analysis to the co-authorship network of the past ACM, IEEE, and joint ACM/IEEE digital

library conferences. We base our analysis on a common binary undirectional network model to represent the co-author-

ship network, and from it we extract several established network measures. We also introduce a weighted directional

network model to represent the co-authorship network, for which we define AuthorRank as an indicator of the impact

of an individual author in the network. The results are validated against conference program committee members in the

same period. The results show clear advantages of PageRank and AuthorRank over degree, closeness and betweenness

centrality metrics. We also investigate the amount and nature of international participation in Joint Conference on Dig-

ital Libraries (JCDL).

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction and motivation

In 1994, the National Science Foundation awarded $24 Million (US) to six institutions, thereby officially

kicking off the federally-sponsored DL research program. Also in 1994, the first of what was later to
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become the IEEE Advances in Digital Libraries (ADL) conference and the ACM Digital Libraries (DL)

conference were held in New Jersey and Texas, respectively. In 2001, the two conference series were merged

and the first ACM/IEEE Joint Conference on Digital Libraries (JCDL) was held in Virginia. These confer-

ences have induced a pattern of collaborations which has shaped the domain of DLs over the past decade.
To study the structure of these collaborations, and thereby learn more about the DL research community

itself, we used social network analysis to investigate authorship trends in the composite corpus of the DL,

ADL and JCDL conferences.

Many co-authorship networks have been studied (Cunningham & Dillon, 1997; Egghe, Rousseau, &

Van Hooydonk, 2000; Farkas et al., 2002; Newman, 2001a; Smeaton, Keogh, Gurrin, McDonald, & Sod-

ring, 2002) to investigate the structure of scientific collaborations, and several have studied DL discipline in

general (Cunningham, 2001; Mutschke, 2001). The DL community offers an interesting case study for a

number of reasons. Firstly, it is a quickly growing, dynamic field which has only existed since approxi-
mately 1994. Investigations of its present status and structure will yield valuable data for future longitudi-

nal studies. Secondly, the domain of DLs is a highly multidisciplinary community which has attracted

researchers from a wide area of expertise, e.g. databases, networking, information and library science,

human computer interaction, high performance computing, archiving, and education. This enriches DL

research with the expertise of a variety of scholars, but may lead to fractionating of the community. Lastly,

in such a dynamic, and new domain, few journals exist that are peer-reviewed and included in the ISI

Journal Citation Reports. This makes it difficult to assess the status, impact and influence of researchers

and their institutions if traditional methods cannot be applied.
We are interested in the structure of collaborations within the DL research community and quantitative

metrics for the concepts of status and influence. In this paper, we study author status by determining author

centrality in a co-authorship network derived from the ADL, DL and JCDL conferences from 1994 to

2004. Other DL conferences exist: the European Conference on Digital Libraries (ECDL) began in 1997,

the International Conference on Asian Digital Libraries (ICADL) began in 1998, and the Russian Confer-

ence on Digital Libraries (RCDL) began in 1999. In addition to these conferences, the DL research com-

munity is covered by online serials such as D-Lib Magazine and the Journal of Digital Information.

Although there is a Journal of Digital Libraries, much of the DL research results are covered in traditional
journals by the respective communities outlined above. We chose the ADL, DL and JCDL conference ser-

ies because of our familiarity with the conferences, the ease of automated data collection of them, their lon-

gevity, their sponsorship by the ACM and IEEE, and the fact that they were the first such conferences to be

held. Although ADL, DL and JCDL are international conferences, the fact that they are always held in the

US will surely influence the results, because attendance of an author is required for paper acceptance.

To perform this analysis, we built a weighted directional network model to represent collaboration rela-

tionships. We applied a variety of centrality measures to investigate this network and then defined Author-

Rank, an alternative centrality metric which exploits the features of such networks. The result is validated
against the set of past DL, ADL and JCDL program committee members on the assumption that program

committee members can be regarded as prestigious actors in a field. Our results show clear advantages of

the use of AuthorRank and PageRank.
2. Background and related work

Social network analysis has attracted considerable interest in recent years and plays an important role in
many disciplines (Barabási, 2002; Otte & Rousseau, 2002; Scott, 2000; Wasserman & Faust, 1994; Watts,

2001). A popular culture example is the Oracle Of Bacon project (Tjaden, 2003), which determines the dis-

tance between any actor and Kevin Bacon by examining movie co-starring relationships. This fun example

demonstrates the usefulness that can arise by adapting the concept of a relationship in social network
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analysis to the domain of interest. By defining a relationship to be the co-authoring of an ADL, DL or

JCDL conference paper, we can bring social network analysis methods to bear on our analysis of the

DL research community.

2.1. Social network analysis

Social network analysis is based on the premise that the relationships between social actors can be de-

scribed by a graph. The graph�s nodes represent social actors and the graph�s edges connect pairs of nodes
and thus represent social interactions. This representation allows researchers to apply graph theory (Wass-

erman & Faust, 1994) to the analysis of what would otherwise be considered an inherently elusive and

poorly understood problem: the tangled web of our social interactions. In this article, we will assume such

graph representation and use the terms node, actor, and author interchangeably. The terms edge, relation-
ship, and co-authorship are also used interchangeably.

Given that we have established a social network graph, we can describe its properties on two levels,

namely by global graph metrics and individual actor properties. Global graph metrics seek to describe

the characteristic of a social network as a whole, for example the graph�s diameter, mean node distance,

the number of components (fully connected subgraphs), cliques, clusters, small-worldness, etc. Actor prop-

erties relate to the analysis of the individual properties of network actors, e.g. actor status, distance, and

position in a cluster.

The status of an actor is usually expressed in terms of its centrality, i.e. a measure of how central the
actor is to the network graph. Central actors are well connected to other actors and metrics of centrality

will therefore attempt to measure an actor�s degree (number of in- and out-links), average distance to all

other actors, or the degree to which geodesic paths between any pair of actors passes through the actor.

A class of impact metrics focuses on the recursive nature of status. Clearly, when one is endorsed by a

high status actor, this increases one�s status more than being endorsed by a low status actor. Hence, one�s
status can be derived from the status of the actors one is linked to. This leads to a recursive definition of

status which is mathematically addressed by eigenvector analysis. Since the web�s hyperlink structure mim-

ics the properties of a social network graph (WWW pages are nodes, hyperlink are edges), eigenvector ana-
lysis can also used to measure the prestige of web pages; well-known algorithms include PageRank (Page,

Brin, Motwani, & Winograd, 1998), SALSA (Lempel & Moran, 2000) and HITS (Kleinberg, 1999). How-

ever, in these algorithms all edges by definition have binary weights: a hyperlink either exists or does not

exist, and a social relationship exists or does not exist. Bharat and Henzinger (Bharat & Henzinger, 1998)

developed a weighted edge scheme to improve the HITS algorithm. Given its formulation, it is also possible

to modify the assumption of equiprobability underlying PageRank�s formulation to take edge weight into

account (Chakrabarti, 2003).

2.2. Co-authorship networks

Co-authorship networks are an important class of social networks and have been used extensively to

determine the structure of scientific collaborations and the status of individual researchers. Although some-

what similar to the much studied citation networks in the scientific literature (Garfield, 1979), co-authorship

implies a much stronger social bond than citation. Citations can occur without the authors knowing each

other and can span across time. Co-authorship implies a temporal and collegial relationship that places it

more squarely in the realm of social network analysis.
An early example of a co-authorship network is the Erdös Number Project, in which the smallest number

of co-authorship links between any individual mathematician and the Hungarian mathematician Erdös are

calculated (Castro & Grossman, 1999). (A mathematician�s ‘‘Erdös Number’’ is analogous to an actor�s
‘‘Bacon Number’’.) Newman studied and compared the co-authorship graph of arXiv, Medline, SPIRES,
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and NCSTRL (Newman, 2001a, 2001b) and found a number of network differences between experimental

and theoretical disciplines. Co-authorship analysis has also been applied to various ACM conferences:

Information Retrieval (SIGIR) (Smeaton et al., 2002), Management of Data (SIGMOD) (Nascimento,

Sander, & Pound, 2003) and Hypertext (Chen & Carr, 1999), as well as mathematics and neuroscience (Far-
kas et al., 2002), information systems (Cunningham & Dillon, 1997), and the field of social network analysis

(Otte & Rousseau, 2002). International co-authorship networks have been studied in Journal of American

Society for Information Science & Technology (JASIST) (He & Spink, 2002) and Science Citation Index

(Wagner & Leydesdorff, 2003).
3. Constructing co-authorship networks

We present the representational foundations of our work by discussing three approaches to model co-

authorship networks. The first model is a traditional undirected, binary graph, the second model is a direc-

ted, binary network which allows calculation of actor prestige, and in the third model we consider weighted

co-authorship relations in the network. A set of centrality and prestige metrics is adapted to operate on the

resulting graphs. In particular, we propose AuthorRank, a weighted version of PageRank.

3.1. Binary, undirected co-authorship networks

A simple and widely used co-authorship network model is based on an undirected, binary graph G in

with each edge represents a co-authorship relationship.

Consider two articles:
Article Authors

article 1 ! {v1,v2,v3}
article 2 ! {v1,v2}
If any two authors co-authored an article, an edge with unit weight is created (Fig. 1(a)). For example, in

the table above, authors v1 and v2 would be connected by an edge since they co-authored article 1.

The resulting graph is denoted as an undirected unit-weighted graph G = (V,E), where the set of n

authors is denoted V = {v1, . . ., vn} and E ˝ V2 represents the edges between authors. As will be shown

in following sections, various graph metrics can be extracted from this kind of network.

3.2. Binary, directed co-authorship networks

In order to measure prestige of an author, we must distinguish ‘‘endorsement’’ accorded from endorse-

ment received by authors. In social network analysis, the concept of prestige is defined for directional rela-

tionships. In order to convert a co-authorship graph to a directed graph, we make the following

assumptions:

(1) any undirected network can be represented as a directed network with symmetric linkage, i.e. every

edge in the undirected network G is replaced by two, symmetrical directed edges;

(2) the resulting directional, symmetrical edges represent the mutual endorsement of authors. In fact, in a
random walk model, the directional edges can be understood as the bi-directional movement of a

surfer;

(3) the edge weight is a binary value, indicating the presence or absence of two symmetrical edges.
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Fig. 1. Representations of co-authorship network: (a) binary undirected network; (b) binary directed network; (c) weighted directed

network.
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The resulting graph is denoted as a directed unit-weighted graph (Fig. 1(b)). As will be shown in the fol-

lowing sections, PageRank and other prestige measures can be applied to this network.

3.3. Weighted, directed co-authorship networks

The binary graph representation of co-authorship network omits a number of factors which shape col-

laboration patterns among authors. There are many cases in which the binary network does not correspond

with a common sense notion of magnitude. For example, if two authors co-publish many papers, should the

link between them be considered more important than the link between occasional co-authors? Also, if one

article has two authors and another article has a hundred authors, should the authors in the first article be

considered more connected than those of the second article?
To allow an expression of relationship magnitude we represent the co-authorship network as a directed

weighted graph. The co-authorship graph G is denoted G = (V,E,W), where V is the set of nodes (authors),

E is the set of edges (co-author relationships between authors), and W is the set of weights wij associated

with each edge connecting a pair of authors (vi,vj).

We propose to determine the magnitude of the link between two authors on the basis of two factors:

(1) Frequency of co-authorship: authors that frequently co-author should have a higher co-authorship

weight.
(2) Total number of co-authors on articles: if an article has many authors, each individual co-author rela-

tionship should be weighted less.

We can now determine the weight of co-authorship links. Let the set of n authors be denoted as

V = {v1, . . ., vn}. Let the set of m articles be denoted as A = {a1, . . ., ak, . . . am}, and f(ak) be the number

of authors of article ak. We define:
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Exclusivity: If authors vi and vj are co-authors in article ak,
gi;j;k ¼ 1=ðf ðakÞ � 1Þ ð1Þ
gi,j,k represents the degree to which author vi and vj have an exclusive co-authorship relation for a particular

article. This definition gives more weight to co-author relationships in articles with fewer total co-authors

than articles with large numbers of co-authors, i.e. it weighs the co-authorship relation in terms of how

exclusive it is.

Co-authorship frequency:
cij ¼
Xm

k¼1

gi;j;k ð2Þ
The co-authorship frequency consists of the sum of all gi,j,k values for all articles co-authored by vi and vj.

This gives more weight to authors who co-publish more papers together, and do so exclusively.

Normalized weight:
wij ¼
cijPn
k¼1cik

ð3Þ
This normalization ensures that the weights of an author�s relationships sum to one.

The notions of exclusivity and frequency used in determining co-authorship relations correspond to the

principles underlying Term Frequency vs. Inverse Document Frequency (TFIDF) weighting used in IR

(Baeza-Yates & Ribeiro-Neto, 1999). A TFIDF term weight expresses how strongly a term is tied to a par-
ticular document on the basis of how frequently the term occurs in the document itself versus how fre-

quently it occurs in all documents in the collection. In other words, a term which is exclusively tied to a

particular document will be most frequent within the document itself, i.e. its term frequency is high, while

being relatively rare across the collection, i.e. its document frequency is low. In the same manner, we nor-

malize the raw co-authorship frequency by the number of co-authors, the latter an indication of how exclu-

sive or non-exclusive the co-authorship relations is.

The proposed weighting scheme also has an intuitive basis in random walks on graphs (Fig. 1(c)). The

normalized weight corresponds to the probability distribution of a random walk on the co-authorship
graph. A random walker may choose to start navigating the network from any author. In Fig. 1(c), if

the walk starts from author v1, the walker may travel to v2 or v3 with probability 0.75 and 0.25 respectively.

If the walker starts from author v3, however, the walker has the same probability of visiting v1 or v2. The

weighted co-authorship also has an intuitive meaning as the endorsement of an author. For example, from

Fig. 1(c), we can understand that v1 and v2 have a higher mutual endorsement since they co-authored more

papers.

3.4. Metrics for co-authorship network

A number of social network metrics are available for measuring the characteristics of a binary undirected

collaboration network, including components analysis, small world analysis, and centrality analysis. These

metrics measure various network properties and some may only be applied under certain conditions. The

metrics used in this paper and their applicability are listed in Table 1 and discussed below.

3.4.1. Component size analysis

A component of a graph is a subset with the characteristic that there is a path between any node and any
other node of this subset. A co-authorship network usually consists of many disconnected components (e.g.

disconnected research groups or individuals), and component analysis can be used to learn about the



Table 1

Co-authorship network metrics

Metric Type Property Scope Importance

Binary Weighted Actor Global Whole Network Largest Component Centrality Prestige

Component · · ·
Small world · · ·
Cluster · · ·
Closeness · · · ·
Betweenness · · · ·
Degree · · · ·
PageRank · · · ·
AuthorRank · · · ·
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structure of the network. Some network analysis methods are only widely used in connected networks.

Therefore, in networks with disconnected components, those methods are typically only applied to the larg-

est connected component, as shown in Table 1.

3.4.2. Degree, closeness, betweenness centrality

We have adapted three common centrality metrics, namely degree centrality, closeness centrality, and

betweenness centrality (Wasserman & Faust, 1994), for their use on binary, undirected co-authorship

networks.
Degree centrality of a node is defined as the total number of edges that are adjacent to this node. Degree

centrality represents the simplest instantiation of the notion of centrality since it measures only how many

connections tie authors to their immediate neighbors in the network.

However, authors may be well connected to their immediate neighbors but be part of a relatively isolated

clique. Although locally well connected, overall centrality is low. Closeness centrality therefore expands the

definition of degree centrality by focusing on how close an author is to all other authors. To calculate a

node�s closeness centrality we determine its shortest-path distances to all authors in the network and invert

these values to a metric of closeness. A central author is thus characterized by many, short connections to
other authors in the networks.

Betweenness centrality represents a different operationalization of centrality. It is based on determining

how often a particular node is found on the shortest path between any pair of nodes in the network. Nodes

that are often on the shortest-path between other nodes are deemed highly central because they control the

flow of information in the network. Betweenness centrality can be used in disconnected networks, however

it may generate a large number of nodes with zero centrality, since many nodes may not act as a bridge in

the network.

Though the discussed centrality metrics can be extended to directed and weighted networks, this has re-
ceived less attention (Newman, 2004; Wasserman & Faust, 1994). In this article we will focus on their usage

in binary, undirected networks.

3.4.3. Eigenvector centrality or PageRank

PageRank is the ranking mechanism at the heart of Google (Page & Brin, 1998; Page et al., 1998). In

PageRank, a hyperlink is understood as an ‘‘endorsement’’ relationship. PageRank�s definition of prestige

deviates from the degree, closeness and betweenness centrality by modeling inherited or transferred status.

A page has high rank if the sum of the ranks of its backlinks is high. This covers both the case when a
page has many backlinks and when a page has a few highly ranked backlinks. PageRank can be calculated

using a simple iterative algorithm, and corresponds to the principal eigenvector of the normalized link ma-

trix of the web.
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PageRank is originally designed to rank retrieval results based on the hyperlink structure of the web,

which is a directed but binary graph in nature, therefore we apply PageRank to the binary directed network

model. Our work is inspired by a variety of proposals to extend PageRank to weighted and bi-directional

networks. Eigenvalue centrality was originally intended for an undirected graph (Bonacich, 1972). Apply-
ing PageRank and related centrality measures in a weighted environment is discussed in (Newman, 2003,

2004). Other variations and improvements to PageRank include a ‘‘topic sensitive’’ PageRank to improve

search performance (Haveliwala, 2003), distributed computation techniques for calculating PageRank

(Sankaralingam, Yalamanchi, Sethumadhavan, & Browne, 2003; Wang & DeWitt, 2004), and faster com-

putation of PageRank (Kamvar, Haveliwala, Manning, & Golub, 2003).

3.4.4. AuthorRank: PageRank for weighted, directional networks

We submit that PageRank can be applied to an undirectional co-authorship graph by transforming each
undirectional edge into a set of two directional, symmetrical edges. However, the reduction of edge weights

to binary values entails a severe loss of information. The generated co-authorship weights express valuable

information which should, and can, be taken into account when calculating PageRank values over a

weighted co-authorship graph.

We therefore define AuthorRank, a modification of PageRank which considers link weight. It is based on

a modification of the PageRank assumption that a node transfers its PageRank values evenly to all the

nodes it connects to. Indeed, PageRank assumes that when a node A connects to n other nodes, each re-

ceives a fraction 1
n of PR(A). In probabilistic terms, this models a random walker who is equally probable

to walk from node A to each of its connecting nodes. However, in reality, the chances of link traversal can

be expected to be distributed quite unevenly and according to the degree of relationship between A and the

nodes it connects to. Our co-authorship link weights express how strongly related two nodes, or authors,

are in the co-authorship graph and these weights can therefore be used to determine the amount of Page-

Rank that should be transferred from node A to the nodes it connects to (Fig. 2).

The AuthorRank of an author i is then given as follows:
Fig. 2.

connec
ARðiÞ ¼ ð1� dÞ þ d ARð1Þ � w1;i þ � � � þARðnÞ � wn;ið Þ

ARðiÞ ¼ ð1� dÞ þ d
Xn

j¼0

ARðjÞ � wj;i
where AR(j) corresponds to the AuthorRank of the backlinking node, and wj,i corresponds to the edge

weight between node j and i. The AuthorRank can be calculated with the same iterative algorithm used

by PageRank. One may think of AuthorRank as a generalization of PageRank by substituting wj,i with
1

CðjÞ in PageRank, in which C(j) is defined as the number of links going out of page j.
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Weight transfer in PageRank and AuthorRank: (a) PageRank: A connects to B, C, D and transfers 1/3. (b) AuthorRank: A

ts to B, C, D and transfers according to link weight.
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Looking at the example network underlying Figs. 1 and 2, AuthorRank better reveals status of actors

than centrality measures and PageRank. When collaboration frequency and exclusivity are considered,

v1 and v2 are more prestigious than v3 in the network, AuthorRank captures this property, while centrality

measures and PageRank cannot.
4. DL research community co-authorship analysis

4.1. Generating the co-authorship network

We extracted co-authorship data from DBLP (http://dblp.uni-trier.de/) for ACMDL (1995–2000), IEEE

ADL (1994–2000), and JCDL (2001–2003). This includes all long papers, short papers, posters, demonstra-
tions, and organizers of workshops.1 The dataset contained 1567 authors, 759 publications, and 3401 co-

authorship relationship pairs. Some statistics are readily available from this data set. For example, the

number of articles, authors, international (non-US) authors, and new authors per year are shown in Fig.

3. It can be seen that number of articles and the number of authors are highly correlated, and that a major

boost occurred following the merger of the ACM/IEEE DL series into a single JCDL conference. Fig. 4

shows the number of publications per author. The values range between 1 and 22, with 4 authors publishing

more than 10 papers and 78% of the authors publishing only 1 paper and 95% authors having 3 papers or

less. Authors with eight or more publications are shown in Table 2. Each paper has a mean of 3.02 authors
and a median of 3 authors. The distribution of number of authors per paper is shown in Table 3.

We also studied international collaboration. Approximately 72% (1133/1567) of the authors are affiliated

with US institutions. We discovered that among 3401 co-authorship relationships, only about 7% are col-

laborations between authors from different countries. A country collaboration network is created by accu-

mulating cross-country collaborations from the author network. Fig. 5 shows the result; countries are

represented by domain names, and two countries are closer to each other if authors from those countries

collaborated closely. The figure can only be considered approximate due to the limitations of the visuali-

zation technology used. Fig. 5 shows that JCDL community is centered around .us, with .uk, .nz, and
.sg closely surrounding .us; .nz and .de also play significant roles in connecting different countries. There

are nine countries (.es, .ie, .at, .hu, .nl, .in, .kr, .il, and .za; with 61 authors) that are not connected with

other countries. The distribution of authors from each country is shown in Fig. 6.

4.2. Component size analysis

Similar to observations from previous research in co-authorship networks, the DL co-authorship net-

work is not a single connected graph. The largest component of the network has 599 authors, the second
largest component has 31 nodes and so on. The entire co-authorship network with all components is visu-

alized in Fig. 7, in which nodes represent authors and links represent co-authorship relationship. The larg-

est component is on the left side of the Figure, while the right side shows many small components. Well-

connected components are recognizable by their very dense (dark) shape.

Nascimento (Nascimento et al., 2003) reports that the largest component in SIGMOD�s co-authorship
graph has about 60% of all authors. In the four co-authorship networks studied by Newman (Newman,

2001a), NCSTRL has the smallest largest component, containing 57.2% of all authors. However, in the

JCDL co-authorship network the largest component only includes 38% of all authors. Several possible
1 Unfortunately, due to an error in DBLP, the DL 94 dataset was omitted. We do not believe this omission will significantly alter our

findings.

http://dblp.uni-trier.de/
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explanations could account for this low value, including the relative immaturity of the DL field, the multi-

disciplinary nature of the composite JCDL conference series, the fact that many DL projects grow from a

‘‘grass-roots’’, institutionally oriented focus (Esler & Nelson, 1998), or limited international collaboration

in the DL research community.

To better understand the nature of major components and the reason for them not being in the large

component, we conducted a manual analysis of other large components. This showed that the most dense

shapes include authors from the same institution or working on the same project. We counted 18 compo-
nents with sizes ranging from 7 to 31. By checking the affiliation of authors, we discovered that 5 compo-

nents consist mainly of non-US participants, and that the 31-node component represents the medical

informatics community. By checking titles and content, we found that 13 components account for short

papers or posters only, many of which are about a specific DL application in a particular scenario. There-

fore, it is our guess that the short paper and poster programs encourage a wide participation from other

disciplines.



Table 3

Distribution of number of authors per paper

Number of authors Number of papers Percentage

1 149 19.6

2 216 28.5

3 179 23.6

4 94 12.4

5 45 5.9

6 33 4.3

7 20 2.6

8 7 0.9

9 4 0.5

10 5 0.7

11 1 0.1

12 2 0.3

13 1 0.1

14 1 0.1

15 2 0.3

Total 100

Table 2

Authors with eight or more publications

Name Publications

Hsinchun Chen 22

Edward A. Fox 17

Ian H. Witten 16

Hector Garcia-Molina 13

Alexander G. Hauptmann 10

Gary Marchionini 10

Judith Klavans 9

Carl Lagoze 9

Michael L. Nelson 9

David Bainbridge 8

Richard Furuta 8

Ee-Peng Lim 8

Catherine C. Marshall 8

Terence R. Smith 8
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4.3. Cluster analysis

The weighted graph model also improves the clustering because close and frequent collaboration causes

higher similarity scores between authors, resulting in them being grouped closer together. By representing

each author as a vector of relationships to other authors using the weighted graph model, we conducted a
bottom-up, hierarchical clustering algorithm on the largest component of the co-authorship network. The

hierarchical clustering algorithm starts with all authors and successively combines them into groups with

high inter-authorship similarity. Typically, the earlier mergers happen between groups with a large similar-

ity, and similarity becomes lower and lower for later merges. The result reveals that initial clusters do not

necessarily reflect institutional boundaries. This may be due to the fact that authors may change institu-

tions, and in some cases strong collaborations exist between institutions. In the next stage, institutions

are merged into larger clusters due to their joint publications or common research interests. A well-con-
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nected author is usually only clustered in this stage, which confirms that well-connected authors play an

important role in connecting different clusters.

As a matter of illustration, the clusters to which the authors of this paper belong are shown in Fig. 8. As

can be seen, small clusters are initially formed in each authors� institution (Los Alamos National Labora-

tory and Old Dominion University), and later institutions are merged to larger clusters. The frequency of

joint publications may explain the different stage of merging. By checking publications in each cluster, we
found that LANL, Cornell University and the University of Southampton form a larger cluster because

Cornell cooperated with Southampton in the Open Citation project, and LANL worked with Cornell on

the Open Archives Initiative. Similarly, Virginia Tech (VT) collaborated with the Federal University of

Minas Gerais in Brazil in the Web-DL project, with Penn State (PSU) in the CITIDEL project, and with

Old Dominion University (ODU) in the NCSTRL project. ODU and PSU have no joint publications, they

are clustered together because both collaborated with VT. VT and Federal University probably merged ear-

lier because they have more joint publications.



Virginia Tech

Federal
University

Penn State Univ

Old Dominion
Univ

LANL

Cornell

Southampton

….authors
…

 …
.

…… other clusters…...

Fig. 8. Clustering result.

Fig. 7. Component size analysis.
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4.4. Small world analysis

Since small world analysis can only be done in a connected graph, we used the largest component of the

co-authorship network for our calculation. The largest component (599 authors and 1897 links) has a clus-

tering coefficient of 0.89, and a characteristic path length of 6.58. With a similarly sized connected random
graph, the clustering coefficient is 0.31 and the characteristic path length is 3.66. This means that the JCDL

co-authorship network is a small world graph as can be expected. The giant component is shown in Fig. 9.



Fig. 9. Largest component.
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Nascimento (Nascimento et al., 2003) reports that the SIGMOD co-authorship graph yields a clustering

coefficient of 0.69, and a characteristic path length of 5.65. In all four networks studied by Newman, the

largest clustering coefficient generated is 0.726. This shows a rather high clustering coefficient of the JCDL

co-authorship network, meaning that co-authors of one author are more likely to publish together. The

JCDL co-authorship network also has a rather long characteristic path length, indicating that authors from

different groups are not as well connected as, for example, those in the SIGMOD co-authorship network.

4.5. Centrality

Using the R package (http://www.r-project.org/), we calculated the degree, closeness, and betweenness

centrality for the binary undirected co-authorship network only, as these metrics are not well defined in

a weighted network. The highest ranking 20 authors for each metric and their scores are listed in Table 4.

4.5.1. Degree centrality

The degree centrality distribution is shown in Fig. 10. It follows a rough power-law distribution with a
few authors having a high degree of connection, and most authors have low degree. This measurement has

the disadvantage of giving many authors the same weight. It is also biased to authors with many co-authors

on a single publication, which is common in experimental sciences (Newman, 2001a). The time complexity

is O(1).

4.5.2. Closeness centrality

The closeness centrality is only applied to the largest component (599 authors) since closeness is not well

defined in a disconnected network. It has a bias toward authors that are directly connected to a well-con-
nected author. For example, we discovered in Table 4 that graduate assistants of a prestigious professor

may have a fairly high weight. The time complexity is O(n2), where n is the number of authors in the

network.

4.5.3. Betweenness centrality

The betweenness centrality is applied to the whole network, however only 153 authors have positive val-

ues. The remaining 1414 authors do not lie on the shortest paths between other authors. Betweenness is, in

http://www.r-project.org/
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Table 4

Authors ranked according to centrality measure

Rank Degree Betweenness Closeness

1 Hsinchun Chen 59 Hsinchun Chen 89250.92 Hsinchun Chen 0.259

2 Edward A. Fox 55 Edward A. Fox 83163.92 Edward A. Fox 0.251

3 Terence R. Smith 31 Judith Klavans 57422.69 Judith Klavans 0.235

4 Carl Lagoze 31 William Y. Arms 52242.27 Gary Marchionini 0.234

5 Judith Klavans 27 Nina Wacholder 39226.5 Michael L. Nelson 0.229

6 Zan Huang 26 Craig Nevill-Manning 38808.08 Yiwen Zhang 0.226

7 Gary Marchionini 25 David M. Levy 35769.0 Ann M. Lally 0.226

8 William Y. Arms 21 Ann P. Bishop 32280.0 Lillian N. Cassel 0.226

9 Richard Furuta 21 Tobun D. Ng 30197.13 Byron Marshall 0.225

10 Luis Gravano 20 Gary Marchionini 29593.86 Rao Shen 0.225

11 Michael Freeston 19 Alexander Hauptmann 29142.0 William Y. Arms 0.224

12 Ian H. Witten 18 Catherine C. Marshall 28587.0 Anne Craig 0.221

13 Hector Garcia-Molina 18 Terence R. Smith 23691.87 Larry Brandt 0.221

14 Michael G. Christel 18 Carl Lagoze 22192.66 Terence R. Smith 0.219

15 David Millman 18 David Bainbridge 21168.03 Tobun D. Ng 0.219

16 Tamara Sumner 18 Michael L. Nelson 20696.41 James C. French 0.219

17 Diane Hillmann 18 Howard D. Wactlar 17577.0 Kurt Maly 0.212

18 Yilu Zhou 18 Ching-chih Chen 17309.67 Mohammad Zubair 0.212

19 Jialun Qin 18 John J. Leggett 15845.5 Hesham Anan 0.212

20 Mary Tiles 18 Elizabeth D. Liddy 14964.0 Xiaoming Liu 0.212
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some sense, a measure of the influence a node has over the spread of information through the network, and

indeed some high-ranking authors play crucial rules in connecting different communities.

The computation of betweenness centrality is the most resource-intensive of all measures we explored,

since it requires enumerating all of the shortest paths between each pair of nodes. The time complexity

is O(n3), where n is the number of authors in the network, thus limiting its feasibility in large networks.

4.6. PageRank and AuthorRank

We developed a Java program with a MySQL backend to calculate PageRank and AuthorRank. Both

calculations can be completed in several seconds. The 20 highest scoring authors for the PageRank and



Table 5

Authors ranked according to PageRank/AuthorRank

Rank PageRank AuthorRank

1 Edward A. Fox Hsinchun Chen

2 Hsinchun Chen Edward A. Fox

3 Carl Lagoze Ian H. Witten

4 Judith Klavans Gary Marchionini

5 Richard Furuta Hector Garcia-Molina

6 Gary Marchionini Carl Lagoze

7 Michael G. Christel Alexander G. Hauptmann

8 Terence R. Smith Judith Klavans

9 Tamara Sumner Richard Furuta

10 Ian H. Witten Terence R. Smith

11 Alexander G. Hauptmann Tamara Sumner

12 Hector Garcia-Molina Ee-Peng Lim

13 Javed Mostafa Michael G. Christel

14 Alexa T. McCray Michael L. Nelson

15 Ee-Peng Lim Wee Keong Ng

16 David Bainbridge Javed Mostafa

17 Sally Jo Cunningham David Bainbridge

18 Luis Gravano J. Alfredo Sánchez

19 Catherine C. Marshall Alexa T. McCray

20 W. Bruce Croft Andreas Paepcke
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AuthorRank metrics are listed in Table 5. The time complexity of both algorithms is O(n), where n is the

number of authors in the network.

4.7. Correlation and validation

Several articles have compared the performance of centrality and prestige metrics, and a general conclu-

sion can be that no single measure is suited for all applications; each method has its virtues and utility

(Chakrabarti, 2003; Wasserman & Faust, 1994). We verified and compared metrics in two ways: by the
computation of the Spearman correlation coefficient across ranking methods, and by cross-validation

against the dataset of JCDL program committee members.

4.7.1. Spearman correlation

The Spearman correlation coefficient is used to measure the strength of association between two vari-

ables. In our case, since betweenness generated only 153 authors with positive ranking, and closeness cen-

trality has only been calculated for the largest component, we only compare degree centrality, PageRank,

and AuthorRank. The correlation coefficient between the degree centrality and PageRank is 0.52, and the
correlation coefficient between the degree centrality and AuthorRank is 0.30 (Fig. 11). As expected, Page-

Rank and AuthorRank are more closely correlated with a correlation coefficient of 0.75 (Fig. 11).

4.7.2. Program committee validation

We also verified each ranking method against a dataset consisting of all members of the JCDL, ADL and

DL program committees from 1994 to 2004. This is meaningful, as program committee members are as-

sumed to be prestigious actors in the co-authorship network. To that end, the names of all JCDL, ADL

and DL program committee members were collected from the conference web sites or printed proceedings.
The highest scoring 50 authors for each ranking method (degree, closeness, betweenness, PageRank,

AuthorRank) were then matched one by one against each JCDL committee member to identify matches.



Fig. 11. Comparison of ranking algorithms: (a) degree centrality vs. AuthorRank. (b) PageRank vs. AuthorRank.
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Fig. 12 shows the result of this comparison. The highest ranking 5 authors for each metric have an al-

most perfect match against the dataset of JCDL program committee members. Overall closeness ranking

performs the worst, as only six authors of the 50 highest ranking authors are on the JCDL committees. This

is not a surprise since closeness measures the distance to other authors, and since an author next to a prom-

inent author is not necessarily also a prominent author. Degree centrality had mediocre performance.

Betweenness centrality performs the best among the three centrality measures. Since betweenness evaluates

one�s importance as a bridge between others, this suggests a committee member may be more likely to serve
as a bridge between research groups than a non-committee member. Betweenness, PageRank, and Author-

Rank all show good results, however PageRank and AuthorRank are feasible in large networks due to their

low computational complexity. The results of PageRank and AuthorRank are highly correlated, but there

is no conclusive evidence that one performs better than the other.
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5. Conclusions and future applications

In this paper we investigated the co-authorship network of the DL research community as represented in

the ADL, DL and JCDL conference series. We also presented AuthorRank, an alternative metric for rank-

ing authors� prestige in weighted co-authorship networks. So what does it all mean? What have we learned
about the state of DL research 10 years after the first DL conference?

Our analysis paints the picture of a domain that is in many ways still evolving the rich networks of col-

laboration common in other areas of the scientific enterprise. Our co-authorship graphs indicate a rich tap-

estry of collaborations across institutional boundaries, but demonstrate a significantly higher degree of

clustering and dispersion than one would find in other domains. In comparison with other co-authorship

networks for related disciplines, we find the DL research community co-authorship graph has a smaller

largest component, a larger clustering coefficient and a larger characteristic path length. DL authors thus

collaborate closely within specific clusters but restrict their collaborations to specific groups of interest.
Do these results mean collaboration is less valued in DL research? Of particular interest is our result

demonstrating how well our calculations of author status, i.e. PageRank and AuthorRank, in the co-

authorship graph correspond to the JCDL program committees. Although the domain of DLs is less

well-connected than other scientific domains, the value of collaboration still functions as an invisible hand

guiding the selection of program committees in at least one seminal DL conference. It is thus of vital impor-

tance that a continued emphasis be placed on collaboration to ensure DL research will be even more of the

open, diverse, but well connected marketplace of ideas it is today.

Potentially, the presented network models have several applications. PageRank or AuthorRank could be
used as alternative metrics to evaluate research impacts, they can objectively guide how conference program

committees are established, or to quantitatively evaluate the prestige of conferences based on their program

committees. The weighted model has an advantage for the visualization of a co-authorship graph, which

makes it possible to emphasize important links and truncate trivial links. Based on this idea, our colleagues

built an interactive author navigation tool (Liu et al., 2004) based on the webdot tool of GraphViz (http://

www.graphviz.org). Users can select a preferred author (center of the graph), set a distance from the se-

lected author, and indicate the minimum weight necessary for links to be displayed. In this visualization,

the weight of a link plays an important role as it allows users to identify important links.
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